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Statistical chains have been generated inside a sphere of variable radius R. The mean square root end-to-end 
distance, the radius of gyration, and the entropy of the chains have been determined as a function of R for 
absorbing boundary (AB) and reflecting boundary (RB) statistics to be defined below in this paper. It is 
found that the entropy change AS from the unbounded (free)chain varies as R-2 for AB statistics and as R - 
for RB statistics. 
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INTRODUCTION 

The effect of voids or boundaries on chain statistics has 
long been considered 1-3, particularly in connection with 
problems of practical interest such as gel permeation 
chromatography TM (g.p.c.). It has usually been assumed 
that the entropy of confined chains can be theoretically 
derived through use of the diffusion equation 1-2. This 
implios that the boundary acts on the confined chain in an 
'absorbing' fashion; this will be defined in detail in 
this paper. For simple molecules (gas molecules) it 
is easy to show that boundaries cannot act in an 
absorbing fashion; instead, they are acting in a 'reflecting' 
way, again to be defined below. I n  the case of macro- 
molecules, here idealized by statistical chains, the si- 
tuation is more complex; it seems probable, however, that 
when the dimensions of the voids are small with respect to 
those of the chain, the boundary does not act on the chain 
in an absorbing way. 

The purpose of the present work is to point out some 
difficulties which arise when it is taken for granted, as has 
happened until now, that a boundary acts on a confined 
chain in an absorbing fashion, irrespective of the relative 
dimensions of the boundary and the chain in its unper- 
turbed (free) state. Use of the diffusion equation to 
calculate the entropy of a confined chain is justified only in 
so far as the boundary is absorbing and the 'absorbing 
boundary statistics', to be defined below, are obeyed. 

GENERAL CONSIDERATIONS 

We consider firstly a statistical chain generated stepwise 
using a computer inside a specified three-dimensional 
network, The chain is assumed to be statistical, i.e. 
different segments in the chain may overlap and there is 
no excluded volume. If there are no obstacles, such as a 
boundary interfering with the generation process (free 
chain), then the number of configurations available to a 
chain of N-steps is Zo = z N, where z is the coordination 
number in the process, which is a function of the 
particular generation process being considered. 

If we consider next that the first step of the chain should 
be located inside some closed boundary and that no step is 

allowed to cross that boundary during the generation 
process of the chain, then clearly the presence of a 
boundary reduces the number of configurations available 
to the chain. However, a second possible effect of the 
boundary may be to affect the statistical weight of the 
permitted configurations (those lying inside the 
boundary). In other words, while in the absence of a 
boundary all configurations are given the same statistical 
weight, in the presence of a boundary the permitted 
configurations (those not crossing the boundary) may or 
may not be given the same statistical weight. If all 
permitted configurations are given the same statistical 
weight, the boundary is termed 'absorbing'; otherwise, it 
is termed 'reflecting'. It is now necessary to deal in some 
detail with the statistics of chain generation originating 
from the above two types of boundaries. At the same time 
this discussion will make clear the reason for the terms 
'absorbing' and 'reflecting'. 

Absorbing boundaries 
If the boundary is absorbing, when a statistical chain is 

generated starting from a point inside a closed boundary*, 
there are two possibilities: either, after N steps, the 
generated configuration never crosses the boundary, in 
which case it is accepted as an element of the Monte-  
Carlo calculations; or, it does cross the boundary at least 
once, in which case it is discarded. The effect of the 
boundary can thus be considered 'absorbing' the 
configurations crossing it. This 'absorption' is of course 
quite distinct from the usual adsorption found in the 
physical chemistry of surfaces or interfaces. The latter 
phenomenon is an energetic one (or, rather, a free energy 
one), whilst here, from the energetic standpoint, bound- 
aries are purely neutral, and only ent ropic phenomena are 
acting. This point is essential, and therefore again 
emphasized later 5. By virtue of the absorbing boundary 
sampling procedure, all allowed configurations are given 
the same statistical weight. The effect of the boundary is 
only to eliminate the configurations crossing it, without 

* In what follows the boundary will always be a sphere of radius R, but 
the results thus obtained are of general interest 
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changing the probability of occurrence of the remaining 
ones. The Monte-Carlo calculations discussed in the 
Results and Discussion section show that the concen- 
tration profile of segments from the centre of the sphere 
for R ~ - N  1/2 is a monotonously decreasing function with 
the maximum value at the centre of the sphere and a value 
close to zero near the surface of the sphere (Figure 1). For 
R > 3rg, there is a plateau region near the centre and then 
the concentration decreases at a distance of the order 2rg 
from the boundary (Figure 2). 

Absorbing boundaries are consistent with the solution 
of the diffusion equation; solution of this equation with 
the appropriate boundary conditions ~ 2 leads to a 
variation AS of the configurational entropy of the chain 
with respect to the free chain which is proportional to the 
inverse square of the characteristic length of the enclosing 
boundary, at least when this length does not considerably 
exceed the characteristic length rg,~N 1/2 of the chain. 

Reflecting boundaries 
The chain generation process is initiated as previously 

described. However, when a step crosses the boundary, 
the part of the chain already generated is not discarded; 
instead, the computer is ordered to go one step back (or 
more if necessary), and a new direction, which does not 
cross the boundary, is then followed. The process is 
repeated each time a step crosses the boundary until 
completion of the N steps of the chain. Thus the reflecting 
boundary somehow 'corrects' configurations which are 
trespassing, instead of discarding them. 

Reflecting boundary statistics (RBS) do not preserve 
equal probabilities for the allowed configurations, i.e. 
those inside the boundary. (Of course, the nature of the 
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Figure 1 Concentration profile for absorbing and reflecting boundary 
statistics, when R = 1.1 r~. The Monte-Carlo sampling comprises 1000 
configurations for RB statistics and 50 configurations for AB statistics, 
the latter case involving 10 days of continuous use of the computer. 
Ordinate scale is not the same for the two statistics 
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Figure 2 Concentration profile for absorbing and reflecting boundary 
statistics, when R, the radius of the enclosing sphere is 5r;, where r; is the 
radius of gyration of the free (unbounded) chain of index N = 1000. The 
Monte-Carlo sampling comprises 10 000 configurations for each kind of 
statistics. Ordinate scale is not the same for the two statistics 

boundary does not change their number, it can only 
change their respective statistical weights.) To see this, let 
us consider Figure 3b where two configurations of N steps 
are shown, one with all its segments far apart from the 
boundary (AB), while the other displays several segments 
in close vicinity to it (CD). For a chain starting at A there 
is only one way of completing the N steps up to B; so, the 
statistical weight is one. However, for the chain starting at 
C, there is more than one way to reach point D. Firstly, 
there is the 'normal' way, without crossing the boundary 
at one or several of the points E, E', E" . . .  Then, there are 
the routes that first cross the boundary at one of the points 
E, E', E". . .  or a combination of these points, and are then 
'corrected' in order to follow a permitted direction. 
Normally, in the absence of the boundary, steps reaching 
points E,E ' ,E" . . .  would generate configurations 
different from the configuration CD shown in Figure 3b. 
Therefore, one can see that there are several ways of 
generating the chain CD, and thus the statistical weight to 
be assigned to these configurations is greater than 1: 
configurations close to the boundary are favoured with 
respect to the others. Monte-Carlo statistics using a 
reflecting boundary (see Figures 1 and 2) show that the 
concentration of segments from the centre of the confining 
sphere is constant up until the immediate vicinity of the 
boundary at a distance of a few steps. The concentration 
profile does not depend on the ratio of characteristic 
lengths R and r°g~ N 1/2. This behaviour is quite different 
from that of absorbing boundaries, where the concen- 
tration begins to drop at a distance of about 2r~. 
Consideration of larger statistical weights to be assigned 
to configurationsclose to the boundary suffices to explain 
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Figure 3 (a) Chain generation process: from an initial direction AO three directions OC, OF and OG are allowed, forming an angle of 109.5 ° degrees with 
AO. The length of each side of the cube (e.g. AB) has been taken equal to 2. (b) In reflecting boundary statistics there is one or more than one way to 
generate a given configuration. For configuration AB, lying at the centre of the boundary there is only one way. For configuration CD there is the direct 
way or after reflection on the boundary at one or several of the points E, E', E" 

this difference in behaviour. However, as shown later, the 
configurational entropy change AS from the free 
(unbounded) chain varies now as the inverse first power of 
the characteristic length of the boundary, instead of 
varying as the inverse second power, as is the case for 
absorbing boundaries. This is a result of some practical 
interest. Thus, two features that distinguish absorbing 
from reflecting boundary statistics are: (a) different 
concentration profiles and (b) different power laws for the 
entropy change AS with the characteristic length R of the 
boundary. 

However, since the thermodynamics of confined chains 
is considered to have been solved through consideration 
of absorbing boundaries and use of the diffusion 
equation ~'2, the question now arises: why is it useful to 
consider the Monte-Car lo  statistics of reflecting bound- 
aries? To answer this question some detailed arguments 
are developed below. First of all, a sequence of N steps 
inside the boundary can be interpreted in two ways: it 
may be considered to be, as previously, a particular 
configuration of a single macromolecule of index N; an 
alternative interpretation would be that these steps 
represent the random motion of an ordinary, simple 
molecule inside the network during a time dzN, with the 
restriction that backward motion, when a step is 
completed, is prohibited. Such a motion certainly 
preserves the general statistical features of Brownian 
motion, even though backward motion is not permitted. 

These two alternative interpretations will be called for 
convenience SMC (single macromolecular chain) and 
SSM (steps of a simple molecule). Now it is almost evident 
that in the SSM interpretation absorbing boundary 
statistics cannot be retained. This is so because, for such 
statistics the concentration profile inside the boundary 
(=  the sphere) is a function of the number  of steps N or, 
alternatively, the time d~N during which the trajectory of 
the simple molecule is followed. As N increases, the 
relative density of steps increases at the centre of the 

sphere while at the same time the decrease in density as 
one goes to the periphery becomes more steep. Such a 
situation is, however, nonphysical, since the mean density 
of a gas inside a vessel is a constant and does not depend 
on time. Due to the ergodic theorem, as N - ~  ~ ,  the 
density of steps of a simple molecule should also be a 
constant. As shown in the Results and Discussion section, 
reflecting boundary statistics ensure constancy of the 
density of steps inside the boundary, and therefore 
reflecting boundary statistics should be used in the case of 
simple molecules. Let us now turn to the SMC inter- 
pretation of N steps. In this case, the situation seems more 
complicated, and two cases have to be distinguished, 
R~> rg ,.~ N 1/2 and R < rg, with a transition region probably 
in the vicinity of R--2rg. For  R~r°g, since for entropic 
reasons a macromolecule cannot be flattened against the 
wall of the boundary ( = n o  attractive energy term in our 
problem), it seems reasonable to assume that the mean 
concentration of segments should fall, beginning at a 
distance of the order of 2rg from the boundary. Such a 
concentration profile is consistent with absorbing 
boundary statistics. 

o If R < rg, w e  can make the following arguments: 
consider first that we are in the SSM situation, where a 
number  N of simple molecules move inside the vessel in a 
random fashion. The mean density of molecules (or steps) 
inside the vessel is then a constant. Due again to the 
ergodic theorem, if we wait for a sufficient length of time, 
the N simple molecules will find themselves in such a 
topological configuration as to be linked at an instant t by 
N - 1  links of equal length. Assuming that some 
Maxwell's demon is able to perform instantaneously the 
desired linkage, we now have a single molecule of N steps, 
and we go abruptly from a SSM to a SMC situation. Does 
this also mean that at the same time we should abruptly 
shift from RB statistics (the only relevant for simple 
molecules) to AB statistics? If this were so, the concen- 
tration profile inside the sphere should shift from the 
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horizontal straight line A of Figure 1 to curve B of the 
same Figure. This means that as a result of the linkage, 
some centripetal force should be at work, acting on the 
chain segments. Since, however, R < r~, how such a force 
may arise from the linking is hard to imagine, at a time 
where the chain 'strives' to recover its unperturbed 
dimensions which are rg>R. In such a situation, one 
would intuitively think that the mean segment density is a 
constant within the vessel except at the closest vicinity of 
the boundary, and if this were so, reflecting boundary 
statistics should be used. 

The above argument is of course qualitative and by no 
means constitutes proof that, for R of order rg, reflecting 
boundary statistics should be used for polymeric 
substances, as is always the case for simple molecules. 

Ultimately, experience should determine whether 
boundaries act on confined chains in an absorbing or in a 
reflecting way, depending in particular on the relative 
dimensions R and rg, with probably, a compromise 
between the two modes in the vicinity ofR -~2rg. It is our 
desire to ensure that the reader will not conclude that our 
argument is that confined chains obey RB rather than AB 
statistics, in all physical situations; rather, our argument 
is that AB statistics do lead to some difficulties, especially 
for small confining volumes, which deserve at least a 
closer examination. Pending such an examination, which 
lies beyond the scope of the present article, we give, in the 
following, the Monte-Carlo statistics of both absorbing 
and reflecting boundaries in the hope that these might 
constitute an element in the closer examination of the 
problem raised above. 

COMPUTATIONAL TECHNIQUES 

For convenience, the boundary considered in the calcula- 
tions to follow will be a sphere whose radius R can be 
varied. 

Generation of statistical chains inside the sphere and 
calculation of the different parameters of these chains 
have been performed by using a Monte-Carlo method. 
The program has been written in FORTRAN, partially 
using double precision calculations and was run on a 
Computer Automation LST2 minicomputer with 32 
kwords of 16 bits. Random numbers were generated using 
a method exposed elsewhere 6, and proved to be sequence- 
free and well distributed over the range 0, 1. 

The radius of the sphere, the number of monomeric 
units N of the chain and the number of chains generated 
during each run were the only input data. 

Generation of statistical chains 
A random walk in a body-centred cubic lattice is 

performed: if the coordinate axes are colinear with the 
lattice edges, the vector defining a given segment of the 
chain is written (a, b, c), a, b and c being equal to + 1 or 

- 1, the lattice edge being equal to 2 and the step length 
equal to 31/2 . When going from one segment to the 
following, three different directions are allowed, each of 
them corresponding to changing the sign of one of the 
coordinates of the previous vector (Figure 3). The chain 
thus generated is equivalent to a polymethylene 
macromolecule. 

Determination of the various parameters of the system 
The following parameters and their distribution have 

been calculated: 

(1) The distributions of the end-to-end distances, the 
root-mean-square (r.m.s.) end-to-end distance and its 
standard deviation. 

(2) The distributions of the centres of gravity from the 
cent re of the sphere and the mean distance of the cent res of 
gravity from the centre of the sphere. 

(3) The distribution of the radii of gyration rg and the 
r.m.s, value (rg 2) 1/2 given respectively by: 

I 
1 ~ -]1/2 

and 

where n is the number of chains generated and x u and x~ 
respectively the coordinates of segment j and of the centre 
of gravity. 

(4) The mean number of rebounds (B1) and (B2) and 
the distribution of the sum ( B ) = ( B 1 ) + ( B 2 )  as a 
function of R (see Theory, Reflecting Boundary Statistics). 

(5) The mean number of deadlocks ( C , )  and (C2) as a 
function of R (same remark as above). 

(6) The number of deadlocks D (three steps back to 
continue) (same remark as above). 

THEORY 

Absorbing Boundary Statistics 
In Absorbing Boundary Statistics (ABS) a configura- 

tion being generated is discarded as soon as one of its steps 
crosses the boundary; if no step crosses the boundary, the 
obtained configuration is retained as an element of the 
Monte-Carlo statistics. Since all configurations retain 
equal statistical weights as in the case of a free chain, the 
entropy change of the confined chain with respect to that 
of the free chain is given simply as 

AS = k ln(n/ntot) (3) 

where n is the number of chains retained for the Monte-  
Carlo statistics while ntot is the total number of trials of the 
computer (retained +discarded trials). 

Here is perhaps the place to stress once more that an 
absorbing boundary, as defined above, should not be 
confused with an adsorbing interface. Adsorption 
involves free energy changes, that is energetic as well as 
entropic interactions between chain and interface, the 
latter being given by equation (3) if AB statistics are 
obeyed and by equation (7') if RB statistics are 
obeyed. Neither of equations (3) or (7') contains an 
energetic term, which is, however, always present in 
adsorption phenomena. 

Reflecting Boundary Statistics 
As previously indicated, in Reflecting Boundary 

Statistics (RBS), when, during the chain generation 
process, a step crosses the boundary, the corresponding 
configuration is not discarded, as is the case in ABS; 
instead it is allowed to continue, by ordering the computer 
to choose another direction, after taking one or, if 
necessary, more than one step back. For the body-centred 
cubic lattice used in this work, there are essentially two 
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types of interactions (or events) between a chain being 
generated in the network and the boundary: these events 
are respectively called 'rebounds' and 'deadlocks' and are 
examined in more detail below. 

Counting of the rebounds and deadlocks. A 'rebound' is 
considered to occur if the random walk leads to a lattice 
point situated outside the sphere and if generation of the 
chain can continue after coming back one step and 
choosing another permitted direction. The computer 
counts separately as B~ and B2 events the occurrence of 
one or two possible directions after coming back one step, 
the third direction of course, that leading to the rebound, 
being excluded. If it is not possible to continue after one 
step back (all three possible directions being forbidden as 
leading to rebounds), we have a 'deadlock'; no rebound is 
then registered and the computer is ordered one step 
further back. The program then checks the possibility of 
continuing over the two next steps, counting separately as 
C~ and C2 the possibilities of continuing in one or two 
directions at the first step forwards, the third direction 
being excluded as leading to the deadlock. After a B2 or C2 
event, there is a random choice by the computer of the 
direction to be followed. It sometimes happens that three 
steps back are needed to continue the chain generation 
process, all directions after two steps back leading to a 
deadlock. These so-called D events are scarce and have 
not been taken into account in the calculations to follow, 
as their contribution is negligible. 

Sampling. Two series of experiments with N = 100 and 
N = 100 0  have been performed. The Monte-Carlo 
sampling comprised between 50 and 10000 chains, 
depending on the statistics and R, but usually 500 or 1000 
chains. Only the results for N = 1000 are quoted here as 
the results for N =  100 contribute nothing new for the 
purpose of this work. 

Configurational entropy of the chain. Let a chain of index 
N be enclosed inside a sphere of radius R, the boundary of 
the sphere acting on the chain in a reflecting fashion. To 
calculate the entropy of the chain, we assume first that for 
R being infinite (free chain) the number of configurations 
of the chain is 3 N. For  R being finite, let us assume that a 
given configuration displays events of types B~, B2, C1 and 
C 2 in numbers per step equal to b~, b2, C 1 and c 2. Suppose 
that at the ith step (i< N) a B2 or C2 event occurs. We 
assume now that any of the two permitted paths, if 
followed, will lead in the mean to the same number of 
events of the various kinds until completion of the chain. 
In other words we assume that there is no correlation 
between the path followed after an event has occurred and 
the number of events of the various kinds to follow. With 
this assumption, the number of configurations of all 
chains displaying events of kind B1, B2, C1, C2 in numbers 
per segment bl, b2, cl, c2 is 

Z = 3 NIl -(3b2 + 1 .Sb I +c) l X 2 Nt362 + 1,5c2) (4) 

where c = c l  +c2. To obtain the above relationship, one 
may observe that all configurations displaying a total of 
Nb 2 rebounds of kind B 2 (two possible directions after 
one step back) will have in the mean 3Nb2 positions which 
may potentially generate a B 2 event. But each of these 
positions has only two possible directions, so that, instead 
of having Z = 3  N we shall have z=3N( l -3b2)×2  3Nb: 
configurations; one further observes that for configura- 
tions displaying a total of Nbl events b~ (one possible 

direction after one step back) there are in the mean 1.5Nbl 
positions which may potentially generate a B1 event. But 
each of these 1.5Nbx positions has one possible direction 
for the continuation of the chain, so that Z is further 
reduced to Z = 3  N(1 -3b2-1"5b')x 2 3Nb2. Finally reasoning 
in the same way for C events, equation (4) is obtained. In 
the above equation we have neglected the statistical 
fluctuations between potential event-generating positions 
and the actual number of events occurring. The entropy of 
all configurations displaying the set of events B1, B2, C~, 
C2 in numbers Nbl, Nb2, NCl, No2 is 

S(Nbx, Nb2, Nc~, Nc2)= kN{[1 - ( 3 b  2 + 1.5b 1 +c)]  In 3 

+[3b  2 + 1.5b,] In 2} 

(5) 
where c=c a +c2. Let now P(Nb 1, Nb2, Nq ,  Nc2, R) be 
the probability of the configurations displaying events B~, 
B2, C~, C 2 in numbers Nb~, Nb2, Nc~, Nc2 for the value R 
of the radius of the enclosing sphere. Then, the configura- 
tional entropy of the chain for all possible configurations 
within the sphere is, with the assumption of uncorrelated 
events: 

.fIfFP(Nbl, Nb2, NC l, Nc 2, R) S(R) 

x S(Nbl, Nb2, Ncl, Nc2, R) db 1 db 2 dc I dc2 

Equation (5) shows that S(Nbl, Nb2, Ncl, NC2) is a linear 
function of the number of events B1, BE, C 1 and C2. As a 
result of this only marginal probabilities occur inside the 
integrand and one obtains 

S(R) = kN{[1 - (3bE(R))  + (  1.5bl (g)) + (C(R) )  ] In 3 

+ [(3b2(R)) +(Cz(R))  ] In 2} (7) 

where the brackets stand for 'mean value'. Thus, to 
calculate the entropy of the chain, only the mean number 
of the various events is needed and not their probability 
distribution. 

The entropy difference AS(R1, R2) for two values R~ 
and R 2 of the enclosing sphere is obtained from equation 

o 
9 -  

7 

3 

L I I i 
o.2~ o.so o.~s Ioo 

4/R ~ 

Figure 4 Entropy variation from the free (unbounded) state of the 
chain as a function ofR -2 where R is the radius of the confining sphere. 
when the boundary is considered to be absorbing 
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(7) by replacing R by R 1 and R 2 and making the difference. 
In particular 

AS(o%R)=kN{- [ (3b2 (R) )  +(1.5bl(R))  + (C(R) )  In 3] 30- 

+[(3b2(R)) +(C2(R))] In 2} 

(7') *o - 
The mean numbers ( N b , ) ,  (Nb2) ,  ( N c l )  and < Nc2) 

which are registered by the computer merely describe the 
specificities of the body-centred cubic lattice we used. The 
absolute values of the entropies per chain or per chain ,o- 
segment also reflect this specificity. For  R = ~ ,  these 
entropies are respectively kN In 3 and k In 3. However, 
the entropy difference for two different R values (or, I 
alternatively, the ratio of conformations) should be a 
universal function of R, independent of the particular 
network used to generate the chain. We make therefore 
the fundamental assumption that the entropy difference 
obtained using a body-centred cubic lattice also describes 
the entropy difference for other chain generating 
processes and in particular the random flight statistics 
considered by Casassa 1. This author has derived the 
following expression for the partition K of statistical 
chains inside a sphere and in the infinite medium 
outside it: 

Ksphe~ = ~--1 exp -- m2n 2 (8) 

The configurational entropy difference AS between free 
chains outside the sphere and confined chains inside the 
sphere is given by 

AS = k In K (9) 

Inspection of equation (8) shows that the second term of 
the series is less than one thousandth of the first as soon as 
R is less than 3( r~ °2) 1/2 and becomes negligibly small for R 
values less than ~r~ 2) 1/2. Therefore, the entropy difference 
per segment between two values R I and R2 less than 
3( r~ 2) 1/2 is given by 

AS/kN = - nE(R ~ 2 _ R2 2) (9) 

<, 

0 

45 

15 

I I I I 
0.25 0.50 0.75 1.00 

rQ°/R 

Figure 5 Entropy variation from the free (unbounded) state of the 
chain as a function ofR - 1, where R is the radius of the confining sphere, 
when the boundary is considered to be reflecting. For the large values of 
R-1 there is an upwards trend of the Monte~Carlo points from the 
straight line of the figure which is not shown 

60 

I I I I 
2 3 4 5 ,q/,~* 

F i g u r e  6 Mean radius of gyration (rg) and root-mean-square end-to- 
end distance ro for absorbing and reflecting boundary statistics as a 
function of the ratio R/r:, where R is the radius of the enclosing sphere 
and r: the unperturbed radius of the chain. For the large values of R/rg, 
the corresponding values are larger for ABS, whereas for the small values 
of R/rg the inverse phenomenon is observed 

Thus, Casassa's equation implies that A S ( ~ , R ) / k N  
should be proportional to R -2. The computer results 
given in the next section show that indeed for absorbing 
boundary statistics AS varies as R-2  (Figure 4). On the 
other hand, reflecting boundary statistics lead through 
equation (7) to a variation law in R -  1 (Figure 5). One can 
conclude that Casassa's equation and use of the diffusion 
equation corresponds to absorbing boundary statistics. 
However, as was suggested earlier, statistical chains may 
not obey absorbing boundary statistics in all the R range, 
and in particular for R values less than 3rg. For  this 
reason, in the next section Monte-Carlo calculations for 
various parameters of statistical chain resulting from both 
AB and RB statistics are given. 

RESULTS AND DISCUSSION 

In Figures I and 2 the concentration profiles as a function 
of r/R (r = distance from the centre of the sphere) for AB 
and RB statistics are given. It can be seen from the two 
selected values of R, R = 5rg and R = 1.1rg, that the general 
pattern does not change with R: for RB statistics the 
concentration remains constant inside the sphere and 
drops only in the vicinity of the boundary; for ABS, as 
long as R >> 3rg, there is a plateau region in the central 
region of the sphere and then the concentration drops at a 
distance of the order 2r~ from the boundary. If R is less 
than ~2r~, the plateau region disappears, the concen- 
tration of segments is maximum at the centre of the sphere 
and then drops monotonously to a zero value at r = R. In 
Tables 1 and 2 are given as a function of R/rg the values of 
( r s ) , ( r o )  (the root-mean square end-to-end distance) 
and their standard derivations. 

In Figure 6, (rg) Aas, ( to )  ABS and the corresponding 
quantities for RB statistics are plotted. 

As already observed, Figures 4 and 5 show that ASABs 
varies as R -2 while ASRas varies as R -1. Though this 
result, obtained here for statistical chains, cannot be 
directly generalized to usual polymeric chains, one may 
infer that for the latter chains also the dependence of AS 
on R may follow different laws, depending on the type of 
statistics being obeyed in the particular case considered. 
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Monte-Carlo calculations on statistical chains." J. Dayantis and J. Sturm 

Table i Absorbing Boundary Statistics (N = 1000, r~ = 31.623, r o = 77.460) 

Mon te -Ca  rio Standard Standard 
R/r~g sampling rg deviation r o deviation AS/k 

5.00 10 000" 30.30 7.20 73.09 28.817 0.733 
4.00 500 29.75 7.06 70.79 28.45 0.941 
3.00 500 28.18 5.90 64.43 25.32 1.433 
2.00 500 24.70 4.33 53.20 20.11 2.719 
1.70 500 23.29 3.71 47.55 16.95 3.687 
1.50 500 21.02 3.04 42.83 15.75 4.526 
1.35 500 20.03 2.69 38.16 14.14 5.425 
1.20 500 18.50 2.04 36.05 13.16 6.894 
1.20 500 18.66 1.95 36.35 12.48 
1.10 50 b 17.33 1.78 31.00 11.49 7.895 
1.00 50 15.85 1.77 24.60 5.87 9.372 

"Sampling increased in order to have a good concentration profile inside the enclosing sphere 
b Sampling reduced to save computat ional  time 

Table 2 Reflecting Boundary Statistics (N= 1000, rg=31.623, 
ro ~ = 77.460) 

Table 3 Reflecting Boundary Statistics (number of rebounds bl and b2 
and deadlocks c~ and c 2 per segment as a function of R; entropy change 
AS as a function of R) 

Standard Standard Monte-Car lo  
R/r~g rg deviation r,, deviation sampling R/r~g b I x 103 b 2 x 103 c I x 104 c 2 × 104 d x 10 s -AS/k  

5.00 29.78 7.18 70.76 27.97 10 00~  5.00 2.43 4.20 0.06 1.68 0.25 9.19 
4.00 29.05 6.88 66.65 26.46 1000 4.00 3.00 5.05 0.19 1.68 0.20 11.18 
3.00 28.62 6.84 65.42 26.05 1000 3.00 4.26 6.87 0.47 2.13 0.50 15.52 
2.00 26.27 5.59 56.52 21.12 1200 2,00 6.34 10.23 1.86 2.82 1.58 23.21 
1.70 25.10 5.32 52.00 19.83 1200 1.70 7.51 12.51 2.37 4.02 3.17 28.02 
1.40 23.32 4.17 45.21 16.38 1200 1,40 8.77 14.63 2.89 4.04 5.58 32.72 
1.30 22.69 3.83 43.13 15.44 1200 1.30 9.49 15.66 3.53 4.14 4.83 35.24 
1.10 20.76 3.12 36.86 12.38 1200 1.10 11.77 18.33 4.10 5.52 7.50 42.36 
0.95 19.05 2.34 31.94 10.73 1200 0.95 13.69 21.37 5.44 6.97 9.33 49.43 
0.85 17.59 1.91 28.63 9.95 1200 0.85 15.39 23.36 6.49 6.49 8.92 54.76 
0.75 16.04 1.44 24.84 8.49 1200 0.75 17.98 26.35 6.72 7.16 11.42 62.73 
0.65 14.28 1.05 21.62 7.56 1200 0.65 20.71 31.08 8.95 9.45 12.83 73.31 
0.55 12.36 0.70 18.28 6.27 1200 0.55 25.04 36.33 10.75 10.80 15.92 87.08 
0.45 10.27 0.42 14.78 5.16 1200 0.45 30.68 44.01 16.69 16.76 26.85 106.60 
0.35 8.07 0.23 11.25 3.85 1200 0.35 44.68 52.55 25.73 25.66 40.00 203.47 

"Sampling increased in order to have a good concentration profile inside 
the enclosing sphere 

This is of importance in several problems arising in 
polymer science. To mention a few: 

(i) Polymer chains enclosed inside voids of various 
forms (spheres, ellipsoids, cylinders) or confined by slabs. 

(ii) Gel permeation chromatography. 
(iii) Collapse of polymer chains. 
(iv) Polymerization inside microemulsions 7. 

In the latter case, the unperturbed dimensions of the 
chains polymerized inside inverse micelles may exceed by 
a factor of up to 10 the radius of the core of the inverse 
micelle s, so that the polymerized chain is in a quite 
collapsed form. Following the argument developed in this 
article, the entropy of such chains should obey RB rather 
than AB statistics. 

We may now further comment on Figures 1 and 2 as 
follows: a chain enclosed inside a void will in general 
(neglecting for present purposes any energetic effects) 
take such configurations as will maximize its entropy. 
When R >> rg, the configurations maximizing the entropy 
are those lysing far from the boundary, so that in this case 
AB statistics are probably correct, and the concentration 
profile should be that of curve B of Figure 1. On the other 
hand, when R - rg, AB statistics concentrate the segments 
at the centre of the sphere, and such configurations 
probably do not maximize the entropy. Rather one would 

think that in this case the chain tends to occupy any 
available space, in which case the segments of the chain 
will be evenly distributed inside the void. This implies that 
RB statistics are now obeyed. The above comment 
summarizes the argument developed under 'General 
Considerations' earlier, following which a chain enclosed 
inside a sphere (and more generally a void) should obey 
AB statistics as long as R>>rg and should shift to RB 
statistics as soon as R ~ 2rg or less, with presumably, an 
intermediate region between the two where the kind of 
statistics obeyed is not clearly defined and is some sort of 
compromise between the two. 
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